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Abstract. This paper addresses the topic of how architectural visual
experience can be represented and utilised by a software system. The
long-term aim is to equip an artificial agent with the ability to make
sensible decisions about aesthetics and proportions when creating its
environment. The focus of the investigation is on the feature of line dis-
tributions extracted from digital images of house facades. It is shown how
non-linear “streetmanifolds” can be calculated where each point on the
manifold corresponds to a house façade. Through interpolation between
manifold points and the application of an inverse Hough transform basic
structure plans for new house façades are obtained. If the interpolated
points are close to the manifold it can be argued that the new plans
reflect the character of the surrounding streetscape. The method is also
demonstrated using basic examples which can be represented by circles.

1 Introduction

Aesthetical perception is an important factor in understanding the interaction
of a living individual with its environment. The discipline of environmental aes-
thetics argues that the environment is fully integrated with the individual [1]
and that “aesthetic values pervade the entire range of human culture” [2] which
includes environmental and architectural design of gardens, landscapes, cities,
and virtual space.

The concept of streetmanifolds was introduced in [5, 6] to provide a holistic
geometrical representation of the visual experience which can be gained through
evaluation of a large set of house façades. Navigation in the streetmanifold would
correspond to continuous morphing and interpolating between façade designs
represented by the data set of images of house façades. The concepts of holism,
continuity, and clustering are associated with manifold learning [26, 29] but can
also be found in Gestalt psychology [18, 30] which has close links to the concepts
of visual neuroscience [7].

The hypothesis of the present study is that the visual experience gained by
an architect through visual perception of thousands of house façades during his
education and professional life may be captured in a structure which corresponds
to some form of streetmanifold.
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The house façades along a street contribute to the character of a streetscape [9,
27, 28]. This is an important factor for architects who design a new house for an
empty spot between the other houses of a street such that the new house har-
monically relates to the neighbourhood [12]. The present study’s streetmanifolds
are based on the calculation of pairwise distances between digital images of house
façades. At the current stage of the project the focus is on an important feature
in the visual perception of houses which is the distribution of lines determined
by the edges of the main components of a house façade. Typically most of the
lines have horizontal or vertical direction with a few approximately diagonally
oriented lines along the roof or gable. Figure 6 shows examples of house façades
with virtual lines along edges extracted using a Hough transform [14, 24].

Fig. 1. Circle extracted from images of a rotating shackle using 4-isomap.

The approach to take line directions as the central feature for the calculation
of streetmanifolds is supported by research in visual neuroscience which found
that detection of edge directions is a key component of the human visual sys-
tem [15, 19]. It also was found that the visual system has specialised areas for
representation of different entities such as buildings [11].

The main new contribution of the present article is to utilise the streetmani-
folds calculated from our dataset of house façades in [5] to generate basic plans
for new house façades. The new plans are distributions of lines which are obtained



through linear interpolation of points on the streetmanifold and application of
an inverse Hough transform.

Previous related work which addresses how artificial life methods can be
applied in architecture include philosophical discussions [21] or software de-
velopment associated with the area of emergent design [13, 20, 22]. Reich [21]
addressed the topic of how aesthetic judgment can be incorporated in compu-
tational design. He claimed that aesthetic criteria are embedded in designers’
expertise and their use is manifested in existing designs. Reich discussed how
rationalistic and romanticistic aesthetic criteria can synergistically be applied to
design. As practical example a system for the design of cable-stayed brides was
presented. Frazer [10] proposed a generative design tool for architects based on
cellular automata. An artificial life based emergent design software system was
developed by Ross et al. [22]. It allows architects to endow elements of an archi-
tectural scenario with agency and dynamic spatial interaction. Hemberg et al.
[13] developed computational generative design software for architects which can
generate three dimensional forms and surfaces. Their system used evolutionary
algorithms and L-systems grammars. The aim was to be able to grow and evolve
organic forms.

The remaining sections of this paper address the topic of manifold learning
(section 2), some basic examples of learning circle manifolds (section 3), the
procedure how to extract a streetmanifold from a set of digital images of house
façades (section 4), and how to generate plans for new houses through interpo-
lation of manifold points (section 5). In section 6 follows a brief discussion and
summary of the results.

2 Manifold learning

Manifolds are locally Euclidean spaces with some additional very general mathe-
matical properties [25]. In dimension one they appear as continuous deformations
of lines and circles and in dimension two they are surfaces derived from spheres,
tori, pretzel surfaces, or similar objects. The manifold concept generalises to
higher dimensions.

Manifold learning describes algorithms for non-linear dimensionality reduc-
tion [4, 23]. The aim of manifold learning algorithms is to detect the essential
underlying geometric structure of a high-dimensional data set, to extract it as
a low-dimensional manifold and to embed it faithfully into a low-dimensional
space.

In contrast to the relatively new manifold learning techniques traditional
methods for dimensionality reduction such as principal component analysis (PCA)
[16] or multidimensional scaling (MDS) [8] were designed for reducing the dimen-
sionality of data when the underlying structure was linear.

Two manifold learning methods, isomap [26] and maximum variance unfold-
ing (MVU) [29], have been employed in the present project to calculate street-
manifolds [5]. Both methods can be applied by first calculating a distance matrix
based on a weighted k-nearest neighbour graph of the data points.



Fig. 2. Circle extracted by 4-isomap from images taken by an HD video camera rotating
about 360o in the middle of Wheeler place in Newcastle. For the experiment about
200 overlapping frames were extracted from the video sequence. Twelve of them are
displayed above together with the corresponding points on the circle manifold.

In isomap [26] these pairwise distances, which can be regarded as approxima-
tions to geodesic distances on the manifold, are fed into a MDS. That is, isomap
can be regarded as a modification of MDS where instead of the euclidean dis-
tances approximation to geodesic distances are used. MDS then tries to map the
data into a lower dimensional space while preserving the pairwise distances [8].

The aim of MVU [29, 23] is to maximise the sum of pairwise distances of all
data points, i.e.

∑
ij

(
‖yi − yj‖2 · δNN (xi, xj)

)
, where δNN (xi, xj) is 1 if xi and

xj are nearest neighbours and 0 otherwise; The maximisation is subject to two
conditions which postulate that: (I) distances between nearest neighbour inputs
should be the same as between the associated outputs, i.e. ‖yi−yj‖2 = ‖xi−xj‖2
and (II) the outputs should be centered at the origin, i.e.

∑
i yi = 0.



Fig. 3. Streetmanifold calculated with isomap and Bhattacharyya based distance.
Colour encodes the third dimension.

3 Extracting circle manifolds

A simple example how manifold learning works is shown in figure 1. Given was
a sequence of digital images of a rotating shackle, i.e. the underlying dynamics
of the data set was a rotation. The dimension of the space of digital images is
the number of pixels in each image, i.e. 192× 292. Isomap with k = 4 was able
to extract a 1-dimensional circle, that is, a non-linear 1-dimensional manifold
embedded in R2 from the rotating shackle data.

In a second experiment, instead of taking pictures of a rotating object, we
rotated the camera at the center point of a circle. Figure 2 shows that the result
4-isomap extracted from an image sequence taken by an HD video camera while
rotated in the middle of Wheeler place in Newcastle is again a circle. The data
consisted of about 200 overlapping frames sampled from the video sequence.

4 Calculating streetmanifolds

The calculation of the streetmanifolds was based on a dataset of several hundred
digital images of house façades which were taken in Newcastle and selected by
a team of researchers from architecture. Some example images are shown in
figure 6.



Fig. 4. Streetmanifold calculated with MVU and Bhattacharyya based distance. The
manifold is very similar to figure 3.

A line can be regarded as a set of points x = (x1, x2) ∈ R2 and can be
determined by using the Hessian normal form { x ∈ R2 ; [cosϕ, sinϕ]·x−b = 0 },
where ϕ ∈ [0, 360o[ controls the slope of the line’s normal vector and b ∈ R is its
perpendicular distance from the origin. Using the Hough transform [14, 24] each
image was associated with an array of discrete parameters (ϕ, b) ∈ [0, 360o[×R—
the Hough array—where each point corresponds to a line in the image.

For the application of isomap and MVU the distance between each pair of
Hough arrays was calculated. The discrete set of point values in the Hough
arrays was smoothed by multiplying each point in the array with a Gaussian
function. Then for each pair of smoothed Hough arrays A = (aij) i=1,...,m

j=1,...,n
and

B = (bij) i=1,...,m
j=1,...,n

their Euclidean distance was calculated using d2(A,B) =

(
∑

i=1,...,m
j=1,...,n

(aij − bij)2)1/2. An alternative distance based on the Bhattacharyya
distance measure [3, 17] was applied after normalisation of the arrays: dBhat(A,B) =
1−

∑
i=1,...,m
j=1,...,n

√
aij

√
bij .

Application of isomap or MVU allowed to embed the manifold of Hough
arrays into two or three-dimensional space (figures 3, 4, and 5).



Fig. 5. Streetmanifold calculated with MVU and Euclidean distance appears to have a
different shape but shows similar clusters as figures 4 and 3. Colour encodes the third
dimension.

To evaluate the streetmanifold we selected six clusters of houses (A-F) in
figures 3, 4, and 5. Four representative houses from each of the six clusters are
shown in figure 6. We found (cf. [5]) that houses of category A were narrow and
had a relatively high percentage of vertical lines. In contrast the houses of cate-
gory B were wide and had strong horizontal and vertical components. Category
C had houses of medium width with many horizontal lines. The D category was
very similar to the C category but the houses were wider in D. In the E category
houses were hidden behind trees and the distribution of horizontal and vertical
lines tended to be homogeneous. The associated cluster was located at a close
to central position. Cluster F contained houses with average characteristics.

5 Generating design templates for new house façades
through linear interpolation of streetmanifold points

The geometry of the streetmanifold is determined by the distances between all
records of the dataset. Therefore the streetmanifold calculated from the image
dataset of the houses of a street or neighbourhood can be regarded as a re-
presentation of the aesthetical character of the streetscape.

Points on or close to the streetmanifold represent Hough arrays of façades
which have similar features as those of the images which were used to generate



Fig. 6. Six clusters of houses (A-F) found in the streetmanifolds.

the manifold. Through application of an inverse Hough transform it is possible
to generate for each manifold point a line distribution as shown in the middle
column of figure 7. These patterns of lines may be used as a plan for architects
to outline basic proportions of a house which should fit into the streetscape.

In the present study several pairs of house facades were selected and for each
pair a linear interpolation of the associated Hough arrays was calculated. Then
an inverse Hough transform was applied to the result of the interpolation. Before
interpolation the Hough arrays were smoothed by multiplying each peak with a
Gaussian function. The inverse Hough transform was calculated by selecting the
30 highest local maxima of the sum of the two smoothed Hough Arrays.



Interpolation of A1 and A2

Interpolation of A1 and F1

Interpolation of A1 and D2

Interpolation of A2 and B2

Interpolation of F4 and B1

Fig. 7. The middle column shows the inverse Hough transforms of interpolations be-
tween Hough arrays corresponding to five pairs of house façades. The outcome indicates
that interpolation between A1 and A2 or A1 and F1 led to sensible results in contrast
to interpolation between distant points such as A2 and B2.



Figure 7 shows in the middle column the resulting plans obtained by this
procedure of interpolation between Hough arrays of the pairs (A2, B2), (F4, B1),
(A1, A2), (A1, D2), and (A1, F1), respectively. The house façades were selected
from the data used to calculate the streetmanifolds and are also displayed in
figure 6. The format and size of the plans in the middle column of figure 7 was
determined by taking the maximum of the two heights and widths of the two
images of the house façades which were used in the interpolation process.

6 Discussion and summary

The streetmanifolds in figures 4 and 5 show a comparable structure of clusters to
the streetmanifolds of figure 3 and our previous results [5]. The resulting clusters
suggest that the streetmanifolds have captured and smoothly organised a variety
of line-based features of the whole data set in one object.

Although streetmanifolds are non-linear we have employed linear interpola-
tions of smoothed Hough arrays. That means that for close points such as A1
and A2 the interpolation result is likely to be close to the manifold but for dis-
tant points such as A2 and B2 the interpolation result may be far outside the
manifold and hence not representative for the character of the streetscape.

In some cases we added the interpolation result to the initial data set of
Hough arrays an recalculated the streetmanifolds. For close points the manifold
did not change much but for some of the distant points the newly calculated
streetmanifolds seemed to have changed significantly compared to the original.

These results seem to support the hypothesis that local interpolation (e.g.
between A1 and A2) or interpolation on the manifold may lead to plans which
are conform with the character of the streetscape which is represented by the
geometry of the streetmanifold.

Future research may investigate alternative options of interpolation on street-
manifolds and their use in software systems for generative design.
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